

# High Etendue Spectrometer

# **Technical Specifications**

www.is-instruments.com

## **Contact Details**

Correspondence Address: IS-Instruments Ltd Pipers Business Centre 220 Vale Road Tonbridge Kent TN9 1SP UK

Email: Phone: Fax: info@is-instruments.com +44 (0) 1732 373 020 +44 (0) 1732 373 001



# **Technical Specifications**

This document shows the technical specifications of the HES range. Further information can be found on the IS-Instruments website, where you can download gold standard scientific articles of the instrument performance when used in the field. The HES range is predominately used for Raman spectroscopy, and the laser and probe are also provided for a complete Raman unit. Bespoke systems are available on request.

| Model                           | HES1000                  | HES2000                  | HES2003                  | HES2000IR                |
|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Configuration                   | SHS                      | SHS                      | SHS                      | SHS (Infra-Red)          |
| Wavelength                      | 350 – 1000 nm            | 350 – 1000 nm            | 350 – 1000 nm            | 850-2000 nm unit         |
| Range                           | units available          | units available          | units available          | available                |
|                                 |                          |                          |                          |                          |
|                                 | Typical setup for        | Typical setup for        | Typical setup for        | Typical setup for        |
|                                 | Raman (@532)             | Raman (@ 785 nm)         | Raman (@785 nm)          | Raman (@1064             |
| Range can be                    |                          |                          |                          | nm)                      |
| adjusted as required            |                          |                          |                          |                          |
| from 50 – 4000 cm <sup>-1</sup> | 200-2500cm <sup>-1</sup> | 200-2500cm <sup>-1</sup> | 200-2500cm <sup>-1</sup> | 200-2500cm <sup>-1</sup> |
| Resolution                      |                          |                          |                          |                          |
| (per Fourier                    | < 3cm <sup>-1</sup>      |                          |                          | < 6cm <sup>-1</sup>      |
| bin)                            |                          |                          |                          |                          |
| < 1 cm 1 (also                  |                          |                          |                          |                          |
| available)                      |                          |                          |                          |                          |
| Slit                            | No Slit                  |                          |                          |                          |
| Fibre Input                     | S                        | SMA                      | Custom                   | SMA                      |
|                                 | FC/PC                    |                          | Custom                   | FC/PC                    |
| Fibre diameter                  | 1 mm 3 mm                |                          | 1 mm                     |                          |
|                                 |                          |                          | 3 mm                     |                          |
|                                 |                          |                          |                          | (3 mm also               |
|                                 |                          |                          |                          | available)               |
| Fibre NA                        | 0.22                     |                          |                          |                          |
| Linearity                       | > 99 %                   |                          |                          |                          |
| Detector Type                   | Machine vision           |                          |                          |                          |
|                                 | camera (max              | Cooled CCD               | Cooled CCD               | Cooled InGaAs CCD        |
|                                 | integration time         |                          |                          |                          |
|                                 | 10 seconds)              |                          |                          |                          |
| Supply Voltage                  |                          |                          |                          |                          |
| Dimensions                      |                          |                          |                          |                          |
| Weight                          |                          |                          |                          |                          |
| Software                        |                          |                          |                          |                          |

#### **Example spectra**

The most common configuration for the HES instrument is as the main workhouse within a Raman Spectrometer. The Spatial Heterodyne Spectrometer (SHS) configuration provides the system with greater than x100 throughput, allowing the system to be used for standoff Raman measurements, as well as for Raman observations of diffuse targets. Below are examples of Raman spectra observed with a HES2000 instrument.



Figure 1: Raman spectra: (a) Aspirin and (b) Paracetamol

The HES range of instruments can be constructed with any detector, however ISI's detector of choice is a Cooled CCD from Andor. The Quantum efficiency of these detectors as a function of wavelength is given below.



Figure 2: Quantum efficiency of the cooled CCD

# **Mechanical Drawings**



### Disclaimer

THE INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT WARRANTY, CONDITION OR REPRESENTATION OF ANY KIND, EITHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO, ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL IS-INSTRUMENTS BE LIABLE FOR ANY LOSS OR DAMAGE, WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHERWISE HOWSOEVER CAUSED WHETHER ARISING IN CONTRACT TORT OR OTHERWISE, ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE INFORMATION PROVIDED HEREIN.

# **COPYRIGHT AND PROTECTIVE NOTICES:**

The copyright in this document and the associated drawings are the property of IS-Instruments Ltd. and all rights are reserved. This document and the associated drawings are issued on condition that they are not copied, reprinted, or reproduced, nor their contents disclosed. The publication of information in this documentation does not imply freedom from any patent or proprietary right of IS-Instruments or any third party.

# TRADEMARKS & PATENT INFORMATION:

IS-Instruments and the ISI logo are trademarks of IS-instruments Ltd. All other marks are property of their owners