EXPERT EN PHOTONIQUE 30 ANS DE PASSION





Lasers, Diodes et Sources de lumière Instrumentation optique Opto-mécaniques et Optiques Imagerie et Détection Spectroscopie et Microscopie Sécurité laser...

2020





Opton Laser est un distributeur Français de produits de haute technologie fondé en mars 1990 et opérant dans le domaine de la Photonique. Opton Laser a acquis au cours de ces 30 années une réputation d'innovation et d'excellence de service, en particulier dans les domaines du laser et de la spectroscopie, mais également des composants opto-mécaniques et de l'instrumentation pour lasers.

Opton Laser est basé à Orsay, avec une antenne à Toulouse, et reste un des rares acteurs indépendants du secteur. Son succès et sa réputation prennent leur source dans la réactivité et la flexibilité de l'entreprise, combinés avec la stabilité d'une équipe dont la compétence est reconnue sur le marché.



**Opton Laser International** est membre fondateur d'Allied Photonics, une association d'entreprises européennes indépendantes du secteur de la photonique. Tous les membres partagent philosophie, principes éthiques et mettent en commun leur expertise technique.

L'objectif de **Allied Photonics** est de combiner la réactivité et le faible coût de fonctionnement d'une PME avec la puissance d'un réseau international au bénéfice de nos clients, de nos fournisseurs et des membres de Allied Photonics.

**Allied Photonics** est aujourd'hui le principal acteur européen dans le domaine de la distribution de produits photoniques.

# **SOMMAIRE**

| Diodes lasers accordables et SLM            | 4  |
|---------------------------------------------|----|
| Lasers à solide SLM                         |    |
| Lasers fs- ps                               |    |
| Lasers ns- ps                               |    |
| Lasers OPO accordables                      | 8  |
| QCL accordables MID IR                      |    |
| Lasers IR- ICL/QCL/ DFB                     |    |
| Lasers CO2                                  |    |
| Diodes lasers de puissance                  |    |
| Lasers HeNe- Argon                          |    |
| Diodes et LED picoseconde                   |    |
| Comptage de photon                          |    |
| Sources multi-longueurs d'ondes             |    |
| Sources accordables UV-NIR                  |    |
| Filtres passe-bande accordables             |    |
| Lasers à fibre                              |    |
| Détecteurs IR- Visible                      |    |
| Mesure de puissance et Energie laser        |    |
| Caractérisation spectrale de sources        |    |
| Spectromètres hautes performances           |    |
| Spectromètres modulaires                    |    |
| Spectromètres IR                            |    |
| Spectromètres Raman                         | 23 |
| Microscopie MID IR- Raman- AFM              |    |
| Imagerie et Microscopie                     |    |
| Imagerie multi et hyperspectrale            |    |
| Microscopes hyperspectraux                  |    |
| Spectromètres et Caméras THz                |    |
| Caractérisation de composants optiques      |    |
| Lampes flash                                |    |
| Mesure d'onde accoustique                   |    |
| Analyseur de liquides MID IR                |    |
| Opto-mécanique                              |    |
| Micropositionnement et Piézoélectrique      |    |
| Composants optiques Laser                   |    |
| Cristaux non-linéaires                      |    |
| Composants télécom                          |    |
| Scanners, Shutters, Cellules de Pockels     |    |
| Isolateurs optiques et Rotateurs de Faraday |    |
| Sécurité laser                              |    |
| Hotte à flux laminaire                      |    |
| Support et SAV                              | 35 |

#### Diodes lasers accordables et SLM



#### **Diodes lasers accordables**

Les lasers accordables à diode mono-fréquence utilisent une diode laser et un élément sélectif en fréquence comme un réseau pour la sélection et l'accordabilité en longueur d'onde. Ces systèmes sont disponibles pour des longueurs d'ondes individuelles comprises entre 190 nm et 4 µm et offrent une émission à largeur de raie étroite (typ 5-100kHz)



et accordable, dans certains systèmes, jusqu'à une plage de 120 nm sans saut de modes. Tous ces systèmes peuvent être stabilisés activement sur des références (cellule à gaz, cavité haute finesse, peigne de fréquence...).

| Séries     | Longueur d'onde                         | Puissance  | Gamme Accordabilité |
|------------|-----------------------------------------|------------|---------------------|
| CTL        | 950, 1050, 1320,<br>1470, 1500, 1550 nm | 100 mW max | 60 120 nm (MHFTR)   |
| MDL pro    | 4 sorties 369 1625 nm                   | 160 mW max | 2 100 nm            |
| DL pro     | 369 519, 628 1770 nm                    | 10 300 mW  | 2 100 nm            |
| DFB pro    | 633, 760, 3500 nm                       | 2 150 mW   | 2 6 nm              |
| TA pro     | 662 1495 nm                             | 4 W max    | 10 50 nm            |
| TA-SHG pro | 330 780 nm                              | 2 W max    | 2 20 nm             |
| TA-FHG pro | 190 390 nm                              | 500 mW max | 1 10 nm             |
| ТОРО       | 1450-4000 nm                            | 4 W max    | 1450-4000 nm        |

# Diodes mono-fréquence à longueur d'onde fixe

| Modèles        | Longueur d'onde Puissance |                 | Largeur de<br>raie     | Longueur de<br>cohérence |
|----------------|---------------------------|-----------------|------------------------|--------------------------|
| Top Mode       | 405-633 nm                | 50/100 mW       | < 5 MHz<br>(< 0.01 pm) | >25 m                    |
| iBeam Smart WS | 633-638<br>685-785 nm     | 30-40-70-120 mW | <25 MHz                | >5 m                     |
| Holo-litho 405 | 405 nm                    | 1 W             | <1 MHz                 | >100 m                   |
| XTRA II        | 785 nm                    | 300-500 mW      | <10 MHz                | >10 m                    |



#### 266nm de 10 mW à 300 mW, TEM00

Conçu pour une intégration aisée, le **TopWave 266** est un système clé en main contrôlé via un écran tactile sur l'unité de commande ou via l'interface USB / Ethernet associée à une interface graphique pour PC.



| Lasers                 | TopWave 266-150/300    | FQCW-10C                   | FQCW-50-100                |
|------------------------|------------------------|----------------------------|----------------------------|
| Puissance de sortie    | 150 mW/ 300 mW         | 10 mW                      | 50/100 mW                  |
| Stabilité en puissance | < 1% (8h)/2% RMS       | 1% RMS                     | 2% RMS                     |
| Largeur de raie        | < 1 MHz                | <300 kHz                   | <300 kHz                   |
| Bruit RMS              | <0,25%<br>(10Hz-10MHz) | <1% RMS<br>(100 kHz-10MHz) | <1% RMS<br>(100 kHz-10MHz) |

320 nm 142 nm 515 nm

640 nm 720 nm 1064 nm 1112 nm

Largeur de raie : ≤0

1 W



#### **Lasers CW TEM00**

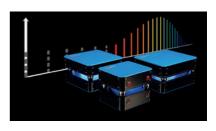
- Modules diodes lasers : iBeam smart
- Lasers à solide de 375 nm à 1500 nm, du mW à quelques W
- Modules d'alignement, visée, génération de lignes, croix...







#### Lasers à fibre impulsion brève


Les lasers FemtoFiber de TOPTICA sont des solutions fiables pour générer des impulsions femtosecondes / picosecondes. Ils sont basés sur une architecture à base de fibres à maintien de polarisation et sur un verrouillage de modes de type SAM (Saturable Absorber Mirror). Différents modèles (780/1560 nm, sortie accordable VIS / NIR, supercontinuum IR / NIR, impulsions courtes) couvrent un large éventail d'applications : Microscopie non linéaire, polymérisation à deux photons, Térahertz dans le domaine temporel, science attoseconde et injection d'amplificateurs à impulsions courtes.

|                      | Principales caractéristiques                                                                                                                                |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FemtoFiber<br>pro    | <ul> <li>Couverture unique en longueur d'onde: 488,<br/>640, 780/1560, 830-1100, 980-2200, 1030 nm</li> <li>Sorties multi-couleurs synchronisées</li> </ul> |  |  |  |
| FemtoFiber<br>Smart  | <ul> <li>Conception compacte, robuste et fiable</li> <li>Un seul boîtier optique et électronique</li> <li>785, 1030, 1064, 1560, 1950 nm</li> </ul>         |  |  |  |
| FemtoFiber<br>Ultra  | <ul> <li>920, 780, 1050, 1560 nm</li> <li>Fibre à maintien de polarisation (PM)</li> <li>Système compact refroidi par air</li> </ul>                        |  |  |  |
| FemtoFiber<br>Dichro | <ul> <li>2 couleurs + DFG : 5-15 μm</li> <li>Impulsions synchronisées</li> </ul>                                                                            |  |  |  |
| FemtoFiber<br>Vario  | <ul> <li>Laser à fibre µJ, 1030 nm</li> <li>Taux de répétition ajustable, pulse sur demande</li> <li>Durée d'impulsion continûment ajustable</li> </ul>     |  |  |  |



# Peignes de fréquence

Le peigne de fréquence TOPTICA utilise une technologie de différence de fréquence (DFG) permettant d'obtenir un offset intrinsèquement stable dans un système robuste, compact, simple d'utilisation et avec des performances de stabilité très élevées.



#### Lasers nanoseconde

Offre unique de configurations de cavité laser (cavité super-gaussienne, cavité stable multimode ou cavité télescopique "vrai-TEM00") en pompage diodes ou flashs pour s'adapter à chaque besoin.



| Pompage            | Lampes flash                                                                                                                    | Diodes pulsées |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Longueur d'onde    | 1064, 1053, 1047, 532, 526, 523, 355, 266, 212 nm                                                                               |                |  |
| Cadence            | 0 à 100 Hz                                                                                                                      | 0 à 300 Hz     |  |
| Energie/ Puissance | qqs mJ à 10 J                                                                                                                   | qqs mJ à 1 J   |  |
| Durée d'impulsion  | 3-10 ns                                                                                                                         | Sub ns à 20 ns |  |
| Mode spatial       | TEM00, multimode, cavité super-gaussienne                                                                                       |                |  |
| Options            | Conception sans eau de refroidissement, OPO, double pulse pour PIV, émission mono-fréquence, émission en durée ps jusqu'à 8 MHz |                |  |

#### Lasers ns, ps, OPO haute cadence 1 kHz - 200 kHz

Large gamme de lasers DPSS à génération d'harmoniques intra-cavité ou extra-cavité.





| DPSS ns UV           | DPSS ns vert              | DPSS ps MHz               | DPSS ps kHz           | DPSS OPO             |
|----------------------|---------------------------|---------------------------|-----------------------|----------------------|
| 355/351 nm           | 532/527 nm                | 1064/532/355 nm           | 1064/532 nm           | 1,5-2μm<br>2,2-3,4μm |
| 1-50W/<br>30W        | 2-200W/<br>30-150 W       | 10-100 W/<br>5-70W/3-45W  | 2-4 W/<br>1,5-2,5W    | 1-4W/<br>0,3-1W      |
| 40 μJ-1 mJ/<br>20 mJ | 50 μJ-20mJ/<br>200-100 mJ | 100µJ-1mJ/<br>400µJ/200µJ | 2-4 mJ/<br>1,5-2,5 mJ | 1-4mJ/<br>0,3-1mJ    |
| 10 ns/120 ns         | 12-200 ns/<br>120 ns      | 10ps/7ps/7ps              | 25-50ps               | 10-15 ns             |
| 1-200 kHz            | 1-300 kHz/<br>1-10 kHz    | 1-2 MHz                   | 1-5 kHz               | 1-20 kHz             |

# Lasers OPO accordables

Gamme de lasers accordables OPO unique sur le marché. La plupart des solutions sont entièrement automatisées et peuvent intégrer un spectromètre pour une auto-calibration.

- Systèmes pulsés pompés à 355 nm (ou 532 nm) jusqu'à 100 Hz
- Systèmes pulsés pompés à 1064 nm jusqu'à 50 kHz
- Systèmes MIR à émission continue

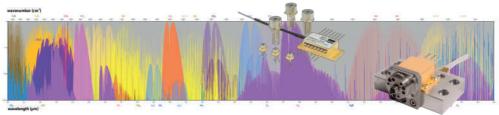
| Spécificité           | Faible énergie                                  | Haute énergie             | MIR kHz                    | MIR CW                                      |
|-----------------------|-------------------------------------------------|---------------------------|----------------------------|---------------------------------------------|
| Cadence               | 0-100 Hz                                        | 0-100 Hz                  | 100 Hz- 5 kHz              | CW                                          |
| Gamme<br>spectrale    | 210-2300 nm                                     | 210-2300 nm               | 1,5- 3,4 μm                | 1,45-4,0μm<br>(2500-6900 cm <sup>-1</sup> ) |
| Largeur<br>spectrale  | <6 cm <sup>-1</sup><br>(12cm <sup>-1</sup> 'UV) | <4 cm <sup>-1</sup> (VIS) | 30 GHz                     | 2 MHz (10 <sup>-5</sup> cm <sup>-1</sup> )  |
| Energie/<br>Puissance | Jusqu'à 5 mJ                                    | Jusqu'à 45 mJ             | Jusqu'à 4 mJ/4W<br>à 1 kHz | 2W (signal)<br>1W (idler)                   |
| Durée<br>impulsion    | <5 ns                                           | 5-7 ns                    | 6-10 ns                    | -                                           |
| Caractéristique       | Spectromè                                       | tre intégré               | TEM <sub>00</sub>          | Frequency lock                              |

# QCL accordables MID IR

DRS DAYLIGHT
SOLUTIONS

- A base de QCL montés en cavités étendues
- Qualité de faisceau TEM00 avec une bonne stabilité de pointé




| Modèles                                                | CW-MHF                | MIRCAT- QT                            | Hedgehog                              |
|--------------------------------------------------------|-----------------------|---------------------------------------|---------------------------------------|
| Accordabilité                                          | > 30 cm <sup>-1</sup> | > 1000 cm <sup>-1</sup> (>6µm)        | jusqu'à 5000 cm <sup>-1</sup> /s      |
| Mode                                                   | Mode CW               |                                       | CW ou pulsé                           |
| Gamme spectrale 4-12μm<br>(2500-835 cm <sup>-1</sup> ) |                       | 3-13μm<br>(3350-750cm <sup>-1</sup> ) | 3-13μm<br>(3350-750cm <sup>-1</sup> ) |



| DFB OU FP                                               | ICL DFB OU FP            |  |  |
|---------------------------------------------------------|--------------------------|--|--|
| 760 nm à 2,9 μm*                                        | 3 μm à 6 μm*             |  |  |
| Puissance quelques mW, > 5 mW typ.                      | Puissance 1 mW           |  |  |
| Boîtiers : TO5.6, TO5 avec TEC, butterfly               | Boîtiers : TO66 avec TEC |  |  |
| Options heatsink, collimation, électronique de pilotage |                          |  |  |

<sup>\*</sup> à n'importe quelle longueur d'onde à 0,1nm près

#### Applications : Détections de gaz | Spectroscopie vibrationnelle



#### Lasers QCL de 4μm à 12-13 μm (750-2500 cm<sup>-1</sup>)



#### DFB pour spectroscopie

FP ou FP large gain (illuminateur large spectre, pour intégrer dans cavité étendue ou pour peigne de fréquence)

#### CW ou pulsé

Boîtiers TO3-L, HHL avec sortie faisceau collimaté <4mm , LLH (avec possibilité d'interchanger les lasers), **NOUVEAU HHL fibré** 

Kit pour lasers avec électronique de pilotage + câbles

**Kit «cavité étendue»** pour QCL FP ou large gain (qques 10zaines à qques 100aines cm<sup>-1</sup>).

**Sources accordables** accordabilité rapide à température fixe sur gamme plus large que les DFB :

- QC-ET et sur 4% de la longueur d'onde centrale
- QC-XT sur 2% de la longueur d'onde centrale

Nouveaux Lasers de puissance (spectre multimode)  $3.95/4.55/4.65/4.90/9.7\mu$ m-Pmoy 1W-1.5W min , (>9W crête), boîtier HHL (collimaté).

**Nouveau Laser "forte puissance crête"** 25W crête (20ns-1000ns)-  $\sim$ 5 $\mu$ J/pulse à 4.57 $\mu$ m (largeur spectrale 100cm $^{-1}$ ).

Applications : Communication optique espace libre | LIDAR et contre mesures IR



#### **Excitation RF,** Refroidis par air ou par eau.

|                 | Gamme standard                                                                                                        | Nouveau           | Céramique                                                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Longueur d'onde | 5,2-5,8 μm / 9-11,34 μm                                                                                               | <b>5,2-5,7</b> μm | 9,3 μm 10,2 μm- 10,6 μm                                                                                                       |
| Puissance       | 50 mW à 50 W                                                                                                          | 5 W               | Jusqu'à 250 W                                                                                                                 |
| Stabilité       | < ± 1%                                                                                                                | ± 2%              |                                                                                                                               |
| Avantages       | <ul> <li>Mode super pulse         (Pcrête 120 W)     </li> <li>Avantages</li> <li>Accordabilité par réseau</li> </ul> |                   | <ul> <li>Puissance ajustable de</li> <li>1W à Pmax</li> <li>Ultra-compact et léger</li> <li>Certifications ISO9001</li> </ul> |

# Usinage | Médical | Dentisterie | Semi-conducteurs | Spectroscopie | Détection de gaz | Mesures diagnostiques



# Diodes lasers de puissance

Barrettes | Stacks de diodes | Modules fibrés

808nm - 940nm - 976nm - ...>1470nm

CW/QCW

20W à 2400W

Refroidissement passif ou actif

Option collimation / couplage fibre 200μm-600μm



#### **Lasers HeNe - Argon**

#### **Lasers HeNe**

Design mécanique robuste, excellente qualité de faisceau, et durée de vie de plus de 20,000 heures. Excellent choix pour de multiples applications comme microscopie confocale, spectroscopie, imagerie, métrologie, positionnement, alignement, mesures industrielles,...

- Longueurs d'ondes : 632,8 nm / 543 nm / 594 nm
- Puissances de 0,5 mW à 35 mW
- Polarisés ou polarisation aléatoire
- Alimentation moulée ou de laboratoire



#### Lasers HeNe stabilisés

- Puissances : ≥ 0,8mW, ≥ 1,2mW ≥ 2,4mW
- Mode de stabilisation en fréquence ou amplitude
- Coupleur fibre optique, calibration
- Applications : Métrologie laser, étalon de fréquence



#### Lasers Argon refroidi par air

Compacts, économiques, excellente qualité de faisceau, grande stabilité de pointé et faible bruit à court et long terme. Aucune maintenance ni réalignement à prévoir. Conviennent pour des applications scientifiques ou industrielles.

- Longueurs d'ondes : 488nm et 514nm / 454,5nm/ 457,5nm/496,5nm
- Versions 1 raie ou multi-raies
- Jusqu'à 225 mW toutes raies



# **Diodes et LED picoseconde**



# Diodes Lasers /LEDs pulsées picosecondes

Nos drivers permettent un contrôle manuel (PDL 800-D et Taïko), ou par PC (SEPIA II et Taïko). Le SEPIA II permet de contrôler jusqu'à 8 têtes lasers simultanément.





| Séries                           | LDH                   | LDHI  | LDH-FA                                      | PLS                   |
|----------------------------------|-----------------------|-------|---------------------------------------------|-----------------------|
| Longueur d'onde (nm)             | 375-1990              |       | 266, 355, 515, 532,<br>560, 765, 1064, 1532 | 255-600               |
| Largeur d'impulsion<br>(FWHM) ps | 40-600                |       | 40-100                                      | 600-1300              |
| Puissance moyenne                | 1-50 mW               |       | 1-450 mW                                    | 1-30 μw               |
| Driver                           | Sepia II<br>PLD 800-D | Taiko | Sepia II<br>PDL 800-D                       | SEPIA II<br>PLD 800-D |



#### Lasers Forte puissance et UV

| Plate-forme                   | VisUV                                    | VisIR                             |
|-------------------------------|------------------------------------------|-----------------------------------|
| Longueur d'onde (nm)          | 266, 280, 290, 355,<br>532, 560, 590     | 765, 1064, 1530                   |
| Largeur d'impulsion (FWHM) ps | 70-1000                                  | 70-500                            |
| Puissance moyenne             | jusqu'à 100 mW                           | jusqu'à 1,5 W                     |
| Avantages                     | jusqu'à 3 faisceaux<br>lasers parallèles | Applications forte puissance STED |



#### **Electroniques TCSPC**

Pour les applications de comptage de photons corrélés en temps (TCSPC), le comptage multicanal (MCS), les corrélations de coïncidences, le marquage temporel d'évènements avec des résolutions temporelles de la picoseconde à la milliseconde.



| Séries                   | HydraHarp<br>400 | MultiHarp<br>150 | PicoHarp<br>300 | TimeHarp<br>260              |
|--------------------------|------------------|------------------|-----------------|------------------------------|
| Nombre de canaux         | 2,4,6 ou8        | 4,8 ou 16        | 1               | 1 ou 2                       |
| Résolution<br>temporelle | 1 ps             | 80 ps            | 4 ps            | 25ps (PICO)<br>250ps (NANO)  |
| Temps mort               | <80 ns           | <0,65 ns         | <95 ns          | <25 ns (PICO)<br>2n s (NANO) |

### Détecteurs de photons uniques

- Photomultiplicateurs (série PMA)
- Photomultiplicateurs hybrides (série PMA Hybride)
- Diodes à avalanche (SPAD série PDM)





| Séries                         | PMA          | PMA hybride       | PDM             |
|--------------------------------|--------------|-------------------|-----------------|
| Résolution temporelle          | < 180 ps     | < 50 ps à <160 ps | <50 ps à 250 ps |
| Efficacité de<br>détection Max | 40% à 400 nm | 45% à 500 nm      | 49% à 550 nm    |
| Gamme spectrale                | 185-920 nm   | 220-890 nm        | 400-1100 nm     |

#### Microscope et spectromètre de fluorescence résolue en temps

Systèmes complets et entièrement automatisées intégrant excitation, détection, électronique TCSPC et logiciels de contrôle et d'analyses.

**Microscopes MicroTime** : Détection/spectroscopie de molécule unique, imagerie FLIM/rapidFLIM/PLIM/FRET/STED..., spectroscopie de corrélation FCS/FLCS..., anisotropie de fluorescence,...

**Spectrofluorimètres FluoTime**: Oxygène singulet, Upconversion de lanthanide, photoluminescence, spectroscopie des états stationnaires, mesure de rendements quantiques, photochimie...



# Sources multi-longueurs d'ondes



#### **Sources Lasers**

La série iChrome est un système laser fibré compact qui combine jusqu'à quatre longueurs d'ondes dans un seul boîtier. et est particulièrement adapté à la microscopie et la biophotonique avec des caractéristiques de fiabilité et stabilité propres à Toptica.



| MODÈLES                          | iChrome CLE               | iChrome MLE                                                           |
|----------------------------------|---------------------------|-----------------------------------------------------------------------|
| Longueur d'onde<br>centrale (nm) | 405-488-<br>561-640, fixe | 405-420-445-460-473-488-505-515-<br>532-561-568-594-640-647, au choix |
| Puissance en<br>sortie Fibre PM  | > 20 / 50 mW              | 100 mW*                                                               |
| Modulation max                   | 1 MHz                     | 20 MHz                                                                |

<sup>\*</sup>en fonction de la longueur d'onde

#### **Avantages:**

- Aucun alignement à prévoir grâce à la technologie Cool AC
- Laser à diode FDDL 561 nm, brevet Toptica (modulation directe possible et Off complet, sans résiduel)
- Fiabilité reconnue

#### Sources LED multi-longueurs d'ondes

Large gamme de sources multi-longueurs d'ondes grâce au concept très modulaire de la société Prizmatix qui assure flexibilité, prix très compétitif et délai de livraison réduit (1-2 semaines). Les solutions couvrent la gamme spectrale de 250 – 940 nm, incluent des sources blanches, et offrent des puissances de **quelques mW à quelques W.** De nombreuses options sont proposées : collimation, sortie "espace libre" ou fibrée (grande brillance), double sorties, générateur d'impulsion programmable...

# **Prizmatix**





#### Sources haute brillance

En dehors des lasers accordables et des solutions multi-longueurs d'ondes à base de lasers, diodes laser ou LED, Opton Laser propose une gamme unique de sources accordables large bande pour la spectroscopie, dont les principales caractéristiques sont résumées dans le tableau ci-dessous :



| Technologie          | Lampe +<br>Monochromateur | Laser à continuum<br>+ Fibre de Bragg | Plasma entretenu par<br>Laser + Hyperchromateur              |
|----------------------|---------------------------|---------------------------------------|--------------------------------------------------------------|
| Gamme<br>spectrale   | ~ 180- 2200 nm            | ~ 400- 2300 nm                        | ~ 170 - 2500 nm                                              |
| Largeur<br>spectrale | ~ 1 - 10 nm               | ~ 1 - 5 nm                            | ~ 1 - 10 nm ajustable                                        |
| Avantages            | Faible coût               | Brillance et densité<br>spectrale     | Brillance, accordabilité et<br>durée de vie (10000h)         |
| Options              | Sortie fibrée             | Largeur spectrale<br>0,15 - 0,9 nm    | Extension UV et MIR<br>Sortie TEM <sub>00</sub> / Collimatée |

# Filtres passe-bande accordables

Les filtres accordables de notre partenaire Photon Ect sont des filtres non dispersifs basés sur des réseaux de Bragg en volume (VBG). Cela leur confère une efficacité incomparable et une densité optique très élevée (> OD6).

| Efficacité jusqu'à<br>65%                         | Haute isolation hors bande<br>(<60 dB)             |  |  |
|---------------------------------------------------|----------------------------------------------------|--|--|
| Largeur de bande<br>1-2,5 nm (VIS)<br>2-5 μm (IR) | Version haute résolution<br>0,15-0,9 nm disponible |  |  |
| Gamme spectrale : 400-2300 nm                     |                                                    |  |  |



Une version du filtre, **l'hypercube**, est spécialement conçue pour les **applications en imagerie**. Il permet de transformer votre caméra, ou votre microscope en un **système hyperspectral**.

# Lasers à fibre

| Lasers de type MOPA pour application LIDAR |                  |                 |  |
|--------------------------------------------|------------------|-----------------|--|
| Longueur d'onde                            | 1064 nm          | 1550 nm         |  |
| Durée impulsion                            | 10-20 ns         | 10 ns           |  |
| Puissance/ Energie                         | 1 W              | 100 μJ          |  |
| Mode                                       | Monocoup 500 kHz | Monocoup 20 kHz |  |

| Lasers de puissance pour usinage laser ns et ps |            |            |          |         |
|-------------------------------------------------|------------|------------|----------|---------|
| Longueur d'onde                                 | 1030 nm    | 515 nm     | 1030 nm  | 515 nm  |
| Durée impulsion                                 | 5 ns       | 5 ns       | 50 ps    | 50 ps   |
| Puissance                                       | 100 W mW   | 10 50 W    | 15-100 W | 10-30 W |
| Mode                                            | 50-500 kHz | 10-500 kHz | 500      | kHz     |

# Les lasers à fibre à 2µm

Advalue Photonics apportent de nombreux avantages par rapport aux lasers à solide Ho et Tm : compacité, grande efficacité, faible maintenance et facilité d'utilisation.



| Modèles            | AP-CW  | AP-CW1                         | AP-SF                     | AA-ML         | AP-QS        |
|--------------------|--------|--------------------------------|---------------------------|---------------|--------------|
| Longueur<br>d'onde | 2 μm   | 1950 nm<br>(option 1,9-2,1 μm) | 2 μm                      | 1,95 /2,07 μm | 1,95 μm      |
| Mode               | CW     | CW ou modulé                   | CW                        | Pu            | lsé          |
| Puissance          | 200 mW | >10W                           | 30mW/5W                   | 1W            | 2W-5W        |
| M <sup>2</sup>     | <1,1   | <1,1                           | <1,1 <1,3                 | <1,3          |              |
| Autres             | -      | -                              | Largeur de<br>raie 10 kHz | <3 ps         | 20 ou 180 ns |

#### Détecteurs IR 2-14µm

Notre partenaire VIGO System a développé une très large gamme de détecteurs MCT (HgCdTe), basée sur une technologie unique permettant de proposer des moyens de mesures rapides et adaptés aux longueurs d'ondes allant de 2 à 14  $\mu m$ , sans refroidissement cryogénique. Des détecteurs InAs et InAsSb sont également disponibles. Préamplifcateurs et contrôleurs TEC peuvent aussi être proposés.



| Type de Détecteur    | Photo                                           | Photo                     | Photo-                     |
|----------------------|-------------------------------------------------|---------------------------|----------------------------|
|                      | conducteur                                      | voltaïque                 | électromagnétique          |
| Gamme spectrale      | 2-14 μm                                         | 2-12 μm                   | 2-12 μm                    |
|                      | 713-5000 cm <sup>-1</sup>                       | 830-5000 cm <sup>-1</sup> | 880-3000 cm <sup>-1</sup>  |
| Boîtier              | TO8-TO39-TO66 ou BNC                            |                           | PEM avec<br>connecteur SMA |
| HgCdTe/InGaAs/InAsSb | Avec ou sans refroidissement TEC (2 à 4 étages) |                           |                            |

#### **Photodiodes rapides**

Bande passante pouvant atteindre 22 GHz. Gamme spectrale comprise entre 190 nm et 2,1  $\mu m$  :

Série ET-2000 Silicium 190 — 1100 nm

Série ET-3000 InGaAs 900 — 1700 nm

Série ET-4000 GaAs 500 — 850 nm

Série ET-5000 étendue InGaAs 850 — 2100 nm



Nous pouvons proposer la plupart de nos photodiodes en version optique libre ou fibrée. Nos photodiodes existent aussi en version amplifiée.

# Mesure de puissance et Energie laser



Fort d'une expérience de 30 ans dans l'industrie photonique, Laserpoint propose l'une des gammes de thermopiles, photodiodes et de solutions OEM les plus complètes et compétitives du marché.

- Mesure de puissance de quelques μW à 12kW
- De l'UV jusqu'à l'infrarouge lointain
- Electroniques : Moniteur tactile couleur ou à connexion PC direct (USB ou RS232)
- Garantie 3 ans

Les premiers à lancer sur le marché :

- Les sondes automatiques digitales
- Les moniteurs à écran tactile
- Mesures simultanées de la puissance, de la position et du diamètre du faisceau
- Le traitement "super hard coating" (seuil de dommage reconnu comme le plus élevé du marché!)
- Les détecteurs à connexion directe PC via USB ou RS232



#### Mesureurs d'énergie pour Laser ultrafast - Haute cadence

La **série BLINK** combine la largeur de bande et la tenue au flux d'une thermopile avec la réponse rapide d'une photodiode.

| Blink FR                          | Temps de réponse | Puissance Max | Densité de puissance |  |
|-----------------------------------|------------------|---------------|----------------------|--|
|                                   | 90 ms            | 50W           | 1,5kW/cm²            |  |
| Blink HS                          | Gamme de cadence | Energie Max   | Densité d'énergie    |  |
|                                   | 10 kHz-1MHz      | 10 mJ         | (pulse 4ns) 35mJ/cm² |  |
| Gamme spectrale de l'UV au MID IR |                  |               |                      |  |







#### Lambdamètres - LES PLUS PRÉCIS DU MARCHÉ

Ces lambdamètres sont basés sur des interféromètres à Fizeau, ce qui a pour avantage de ne pas avoir de pièces en mouvement (pas de désalignement) et d'offrir des vitesses d'acquisition élevées (50kHz max). Ces appareils peuvent mesurer des variations rapides de longueur d'onde et peuvent contrôler des lasers via une électronique de type PID.

| SÉRIE WS              | Haute cadence                   | Haute précision                     |
|-----------------------|---------------------------------|-------------------------------------|
| Plage de mesure       | 380-1150 nm<br>990-1600 nm      | UV, VIS, IR<br>MID IR (1,4 - 11 μm) |
| Précision Absolue     | 600-200 MHz                     | 3 GHz-2 MHz                         |
| Résolution            | 20-4 MHz                        | 500 MHz-200 kHz                     |
| Vitesse d'acquisition | 24 kHz (Visible)<br>50 kHz (IR) | 900-500 Hz                          |
|                       |                                 |                                     |

Option switch 2, 4 et 8 voies pour contrôler simultanément plusieurs lasers Pour lasers CW et impulsionnels



#### Analyseurs de spectre

L'analyseur de spectre à réseau échelle offre des performances inégalées pour des mesures sur de grandes plages de longueurs d'onde avec une bonne résolution et une vitesse de mesure élevée.

| SÉRIE                           | HDSA          | LSA           |  |  |
|---------------------------------|---------------|---------------|--|--|
| Étendue spectrale               | 500 nm        | 10 nm         |  |  |
| Résolution                      | 35000 (λ/Δ λ) | 20000 (λ/Δ λ) |  |  |
| Vitesse de mesure               | 60 Hz         | 500 Hz        |  |  |
| pour lasers CW et impulsionnels |               |               |  |  |

# Spectromètres hautes performances

#### Spectromètres haut de gamme

Nous proposons des systèmes de spectroscopie hautes performances, tant en terme de détecteurs et de refroidissement qu'en terme de caractéristiques optiques (par exemple une ouverture à f/2 grâce à l'utilisation de réseaux de phase en volume). N'hésitez pas à nous solliciter également pour des systèmes sur mesure ou complexes, tels que des spectromètres très haute résolution.





| Séries             | Navima                               | SuperGamut VIS             | SuperGamut NIR   |
|--------------------|--------------------------------------|----------------------------|------------------|
| Gamme<br>spectrale | 200-1100 nm                          | 190-1100 nm                | 900-2200 nm      |
| Focale             | 150 à 750 mm                         | 50 à 1                     | LOO mm           |
| N/A                | f/4 à f/10                           | f/2                        | f/2              |
| Résolution         | 0,03 nm à 0,4 nm<br>(suivant focale) | 1-20 nm                    | 5-20 nm          |
| Détecteur          | 1024 x 122 à 2048 x 50               | 1024 ou 2048               | 256, 512 ou 1024 |
| Refroidissement    | -65°C vs ambiante                    | de 0°0                     | Cà-55°C          |
| Réseau             | Tourelle motorisée<br>2 ou 3 réseaux | VPG (Volume Phase Grating) |                  |
| Fente              | Ajustable                            | Fixe                       |                  |
| Particularité      | Résolution                           | Ouve                       | rt à f/2         |





# Spectromètres modulaires



Gamme complète de spectromètres miniatures à réseau (Czerny Turner), du modèle ultra-compact à **moins de 1000 €** aux modèles hautes performances. Une large gamme d'accessoires est également proposée.



| Séries           | ATP 10xx                  | ATP 20xx        | ATP 30xx            | ATP 50xx                | ATP 65xx                  |
|------------------|---------------------------|-----------------|---------------------|-------------------------|---------------------------|
| Caractéristique  | Ultra<br>compact<br>(57g) | Faible<br>bruit | Haute<br>résolution | Haute<br>sensibilité    | Très haute<br>sensibilité |
| Détecteur        | CCD                       | CMOS            | CMOS                | CCD Back<br>illuminated | CCD "Back<br>illuminated" |
| Refroidissement  | -                         | -               | -                   | -5°C                    | -20°C                     |
| Nombre de pixels | 1024                      | 2048            | 2048 ou<br>4096     | 2049 x 64<br>ou 4096    | 1044 x 64                 |
| Gamme spectrale  | 350 - 800 nm              |                 | 200 -               | 1100 nm                 |                           |

#### Spectromètres proche IR

Le même concept est proposé pour couvrir le proche IR grâce à des barrettes InGaAs. S'y ajoutent aussi des spectromètres à **Transformée de Fourier (FTIR)** qui permettent d'étendre la gamme spectrale pour un coût très compétitif.



| Séries           | ATP 86xx                | ATP 80xx      | FTIR Rocket    | ArcSpectro     |
|------------------|-------------------------|---------------|----------------|----------------|
| Caractéristique  | NIR très<br>faible coût | NIR           | NIR            | UV-VIS-IR      |
| Détecteur        | InGaAs                  | InGaAs        | InGaAs         | Mixte          |
| Refroidissement  | -                       | -20°C         | Suivant modèle | Suivant modèle |
| Configuration    | Czerny-Turner           |               | FTIR           | CT+FTIR        |
| Nombre de pixels | 256                     | 256 à 512     | NA             | NA             |
| Gamme spectrale  | 900 - 1700 nm           | 900 - 2500 nm | 900 - 2600 nm  | 200 - 2600 nm  |

# Spectromètres IR

Des innovations technologiques récentes ont permis de démocratiser la spectroscopie Infrarouge et d'en améliorer performances et facilité d'utilisation. Opton Laser propose une gamme de solutions allant de l'approche classique aux toutes dernières technologies, résumées dans le tableau ci-après :



| Technologie                               | Spectromètre<br>à réseau                                     | Spectromètre<br>FTIR                                     | Spectro<br>photomètre<br>FTIR                         | Spectromètre à<br>conversion de<br>fréquence                            |
|-------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|
| Détecteur                                 | Multi-éléments                                               | Mono-éléments                                            | Mono-éléments                                         | Multi-éléments<br>(VIS)                                                 |
| Gamme<br>spectrale                        | 900-2500 nm                                                  | 900-2500 nm<br>2-12 μm                                   | 1,4-25 μm                                             | 2-5 μm<br>5-12,5 μm                                                     |
| Gamme<br>spectrale<br>(cm <sup>-1</sup> ) | 4000-11000 cm- <sup>1</sup>                                  | 3800-11000 cm- <sup>1</sup><br>830-5000 cm- <sup>1</sup> | 400-7000 cm- <sup>1</sup>                             | 2000-5000 cm- <sup>1</sup><br>800-2000 cm- <sup>1</sup>                 |
| Résolution                                | ~ 10-12 nm                                                   | ~ 4-8 cm <sup>-1</sup>                                   | ~0,5-2 cm <sup>-1</sup>                               | ~ 4-12 cm <sup>-1</sup>                                                 |
| Temps<br>d'acquisition                    | Temps réel                                                   | ~ 1-2 s                                                  | ~ 1-2 s                                               | Temps réel<br>(jusqu'à 600 Hz)                                          |
| Particularités                            | Compact, logiciel compatible avec les spectromètres visibles | Gamme<br>étendue, faible<br>coût, auto-calibré           | Source<br>intégrée, faible<br>coût, auto-ca-<br>libré | Détection dans<br>le visible, ne<br>nécessite pas de<br>refroidissement |

#### Qu'est-ce que la spectroscopie à conversion de fréquence ?

Il s'agit de "mélanger" le signal à mesurer avec celui d'un laser intégré à l'instrument dans un cristal non linéaire (up-conversion ou somme de fréquence). Le laser fonctionnant à  $1\,\mu m$ , le signal est ainsi converti dans des longueurs d'ondes  $<1\,\mu m$ , permettant de "voir" dans le visible et le proche Infra-rouge ce qui se passe dans le MIR. Ceci permet l'utilisation de détecteurs standards, performants, peu coûteux, rapides (jusqu'à 600 Hz en standard pour un spectre complet), et ne nécessitant pas de refroidissement.

# Spectromètres Raman

Les spectromètres Raman proposés couvrent l'ensemble des domaines d'application, du système de terrain au microscope confocal ou hyperspectral Raman le plus évolué, ainsi que des systèmes combinant analyse topographique (type AFM) et Raman. Quelques exemples sont listés ci-après mais de nombreuses autres variantes existent, en particulier d'autres longueurs d'onde d'excitation (de l'UV à 1064 nm) ou des systèmes automatisés multi-longueurs d'ondes (jusqu'à 5) ou multi-échantillons (jusqu'à 100).



| Modèle                                   | ATR6500                        | ATR6600                   | ATR3000 / .                                    | ATR3110                   |
|------------------------------------------|--------------------------------|---------------------------|------------------------------------------------|---------------------------|
| Configuration                            | Matériel de terrain (Handheld) |                           | Matériel de terrain portable ou de laboratoire |                           |
| Laser                                    | 785nm                          | 1064nm                    | 532,633 ou 785nm                               | 1064nm                    |
| Ecran                                    | Tacti                          | le 5,5"                   | Tactile 11,7" ver                              | sion portable             |
| Puissance Laser<br>en sortie de<br>sonde | 300mW                          | 500mW                     | 80-500mW                                       | 500mW                     |
| Gamme<br>spectrale                       | 200-4000 cm- <sup>1</sup>      | 200-2500 cm- <sup>1</sup> | 200-4200 cm- <sup>1</sup>                      | 200-2600 cm- <sup>1</sup> |
| Résolution                               | 11 cm- <sup>1</sup>            | 12 cm- <sup>1</sup>       | 6-12 cm- <sup>1</sup>                          | 12 cm- <sup>1</sup>       |
| Détecteur                                | CMOS                           | InGaAs                    | CCD                                            | InGaAs                    |
| Nombre de pixel                          | 2048                           | 512                       | 2084x64 ou<br>1044x64                          | 512                       |
| Refroidissement                          | -                              | -20°C                     | -5°C ou-20°C                                   | -20°C                     |
| Dimensions                               | 172x85x30 mm                   | 220x110x45 mm             | 400x300x180 mm /                               | 260x330x165 mm            |
| Poids                                    | 450 g                          | 1,15 kg                   | 5-8 kg                                         | 5-9 kg                    |





#### Microscopie MID IR - Raman - AFM



#### Microscope MID IR (QCL)

Les microscopes compacts Spero® et Spero-QT constituent la première et seule plateforme d'imagerie et de microscopie spectroscopique à champ large entièrement intégrée, basée sur la technologie de lasers QCL largement accordables.



- Imagerie hyperspectrale en temps réel
- Cartographie chimique sans marqueur
- Champ large, 480 x 480 pixels
- Rapide ou Vitesse Scan rapide, >7M points spectraux/s

**Applications** : Imagerie biomédicale (tissus, cellules et fluides), essais pharmaceutiques, analyses de protéines, surveillance de réaction en temps réel, analyses de matériaux, détection chimique et identification.

#### **Microscopes Raman confocaux**

Solutions de microscopie Raman confocale allant du système manuel mono-longueur d'onde au système entièrement automatisé intégrant 5 lasers.

| Série RAMOS           | Microscope Raman "True confocal"                    |
|-----------------------|-----------------------------------------------------|
| Longueur d'onde Laser | 325 à 785 nm (jusqu'à 5 lasers sur un même système) |
| Décalage Raman        | 40-8000 cm <sup>-1</sup>                            |
| Résolution spectrale  | ~ 0.25 cm <sup>-1</sup>                             |
| Résolution en X Y     | 200 nm en X,Y, 500 nm en Z                          |
| Vitesse d'acquisition | Cartographie complète en 3s soit 3 μs/pixel         |
| Zone de mesure        | 70 x 50 mm                                          |

#### **Solutions Raman / AFM combinées**

Plateforme commune de SPM pour divers besoins d'analyse à l'échelle nanométrique, permettant de combiner plusieurs techniques de mesure au sein d'un même instrument. Exemples :

SOLVER NANO : AFM / STM compact
 NTEGRA : AFM / STM modulaire évolutif
 NEXT/TITANIUM : AFM / STM automatisé

■ NTEGRA IR : AFM + IR sSNOM

■ NTEGRA SPECTRA II : AFM + Raman / fluorescence/ Rayleigh, +TERS

#### Caméras haute sensibilité pour la spectroscopie

**Caméra ZION**: Gamme de caméras faible bruit et économique pour utilisation avec spectromètres ou monochromateurs – Nos différents traitements permettent de couvrir des longueurs d'onde de 200 nm à 1,7 µm.



1024 x 256 pixels, / 2048 x 512pixels front / back illuminated, QE jusqu'à 90%

Refroidissement : par air (-55°C\*), par TE (-70°C\*) ou par liquide (jusqu'à -95°C)

Version InGaAs pour les applications dans le Proche IR

#### Caméras d'imagerie scientifique hautes performances

Caméras sCMOS, front / back illuminated

QE UV 60% (254nm) / visible 95% (550nm) / NIR 53% (850nm)

Refroidissement typique-25°C (air ou eau)

Vitesse: USB 3.0 (40 fps) et CameraLink (74 fps)

Résolution : 4.2MPx, taille de pixel  $6.5 \mu m$ 



# Caméras SWIR InGaAs et HgCdTe (MCT)

Photon Ect repousse les limites de l'imagerie SWIR en proposant des solutions hautes performances abordables avec sa série ZephIR refroidie par 4 étages TEC à -80°C. (-40°C pour le modèle Alizé)



| Version    | Gamme spectrale                                                               | Courant d'obscurité  |  |  |  |
|------------|-------------------------------------------------------------------------------|----------------------|--|--|--|
| ZephIR 1.7 | 0.5/0.8 à 1.7 μm                                                              | typ. 250 ē/px/s      |  |  |  |
| Alize 1.7  | 0.5/0.8 à 1.7 μm                                                              | < 600 ē/px/s         |  |  |  |
| ZephIR 2.5 | 0.85 à 2.5 μm                                                                 | 4.8 pA or 30 Mē/px/s |  |  |  |
| ZephIR 2.9 | 0.85 à 2.9 μm                                                                 | 54 pA or 340 Mē/px/s |  |  |  |
| Faible bru | Faible bruit - jusqu'à 340 images /s - QE jusqu'à 85% - CameraLink ou USB 3.0 |                      |  |  |  |

# Imagerie multi et hyperspectrale

Caméras multi et hyperspectrales dans le visible et le proche infrarouge, voir même dans le MIR.





| Technologie             | Multispectral              | Push-broom                  | Snap-shot                | Imagerie globale                |
|-------------------------|----------------------------|-----------------------------|--------------------------|---------------------------------|
| Gamme<br>spectrale (nm) | 400-900                    | 400-1700                    | 400-1000                 | 400-1000<br>900-2500            |
| Nombre<br>de bande      | 8+1 (16*)                  | 60-240                      | 25-140                   | Accordabilité continue          |
| Largeur<br>de bande     | 20-40 nm                   | 3-10 nm                     | 8-60 nm                  | 2,5- 4 nm                       |
| Cadence                 | 60Hz/cube                  | 50 fps                      | 120 fps<br>(~1cube/s)    | 3 à 15-20 fps                   |
| Résolution<br>spatiale  | 1280 x 1024<br>2048 x 2048 | 250 à 2048 px<br>en spatial | 256 x 256 à<br>648 x 488 | A partir de 6,45 μm             |
| Particularité           | Vrai temps réel            | Versions pour drones        | A partir<br>de 180 g     | Imagerie pleine réso-<br>lution |

<sup>\*</sup> Nombre de bande sur demande

#### Microscopes hyperspectraux

#### **IMA**

- Cartographie globale rapide (sans balayage)
- Gamme spectrale 400-1000 nm et 900-1620 nm (gamme globale possible)
- Largeur de bande 2-4 nm
- Résolution spatiale sub-µm
- Système complet (source, microscope, caméra et logiciel..)

#### **SPERO QT**

- MID IR / QCL
- Gamme spectrale 800- 2300 cm<sup>-1</sup>
- Largeur de bande variable à partir de 2 cm<sup>-1</sup>
- Résolution spatial 5- 12 μm / 480 x 480 pixels
- Système complet (source, microscope, caméra et logiciel..)



### Spectromètres et Caméras THz

#### **Spectromètres**

TOPTICA fournit des systèmes et des composants complets pour la **génération térahertz** dans le domaine temporel et dans le domaine fréquentiel. Pour les applications dans le **domaine temporel, le TeraFlash pro** établit de nouvelles normes en termes de dynamique, de bande passante et de vitesse de mesure. Le nouveau **TeraFlash smart** utilise deux lasers femtosecondes synchronisés et un échantillonnage optique à commande électronique (ECOPS) pour atteindre des vitesses de mesure extrêmement élevées : 1600 traces par seconde.

| Modèles        | Terascan 780           | Terascan 1550            | Teraflash pro          | Teraflash smart           |
|----------------|------------------------|--------------------------|------------------------|---------------------------|
| Type de mesure | Fréquentiel            | Fréquentiel              | Temporel               | Temporel                  |
| Type de lasers | Diodes 780 nm          | Diodes 1550 nm           | Lasers fs              | 1550 nm                   |
| Bande passante | 1,8 THz<br>(2 THz typ) | 1,2 THz<br>(2,7 THz typ) | 0,1-6 THz, <20s        | 0,1-4,5 THz, 1s           |
| Dynamique      | 80 dB@100 GHz          | 60 dB@100 GHz            | 95 dB >20 s            | typ.>50dB <1 ms           |
| Vitesse        | 100 GHz/s              | 100 GHz/s                | 60 traces/s<br>(50 ps) | 1600 traces/s<br>(150 ps) |

#### **Caméras THz**

| Modèle           | Zcam       | Tera          |
|------------------|------------|---------------|
| Bande passante   | 0,3- 5 THz | 0,05- 0,7 THz |
| Nombre de Pixels | 320 x 240  | 256-1024-4096 |
| Taille pixels    | 50 μm      | 1,5 mm        |



#### Produits associés:

Sources sub-THz 100- 300 Ghz Lasers QCL entre 1- 5 THz, pulsés multimode



# Caractérisation de composants optiques

#### Analyse de couches minces

Conçu par et pour des ingénieurs et techniciens du traitement optique ce spectrophotomètre de notre partenaire ESSENT OPTICS permet le contrôle optique de traitements de couches minces sur substrats solides (mesures en réflexion, en transmission, dépendance en polarisation) de façon simple et efficace.



Gamme spectrale 380 - 1700 nm à 185 - 5200 nm

Composants optiques jusqu'à 152,4 mm de diamètre (6") couvercle fermé

Vitesse, Simplicité, mesures entièrement automatisées

Mesures fiables, résolutions spectrales jusqu'à 0,3 nm (UV)- 0,6 nm (VIS)- 1,2 nm (IR)

Instrument idéal pour une utilisation quotidienne

Garantie 2 ans en standard

# Lampes flash



#### Pour Lasers et IPL en Quartz

- Entièrement fabriquées en Angleterre
- + de 1000 lampes différentes
- Sur mesure ou similaire à un design existant
- Tubes, filtres, réflecteurs...



**Applications** : Pompage | Décontamination | Systèmes IPL...

# Mesure d'onde accoustique



#### Mesures sans contact d'ondes ultrasonores jusqu'à 1 GHz

Ces solutions se distinguent par leur sensibilité et leur faible niveau de bruit et sont idéales en particulier pour des matériaux peu réfléchissants et/ou de faibles déformations.





La série "Quartet" couplée sur fibre, offre une très haute sensibilité et permet un balayage rapide pour une large gamme de besoins grâce à sa polyvalence, la gamme de fréquence détectée va jusqu'à 100 MHz.

La série Tempo est une solution espace libre développée pour des plus hautes fréquences (de 1kHz jusqu'à 1 GHz) ou une analyse multi-composantes, elle offre aussi la meilleure sensibilité du marché.

# Analyseur de liquides MID IR

#### **ChemDetect – Culpeo**

Analyseur de liquides MID-IR pour applications pharmaceutiques et biotechnologiques (analyse de protéines,...).

 ${\color{red} \bullet}$  Petit volume de "Flow Cell" : 10  $\mu L$ 

• Mesures en temps réel : 10 Hz

■ Données quantitatives : g / L

Sensibilité : 10 μg / ml

Logiciel ChemDetect inclus





#### Composants opto-mécaniques

Gamme très complète de produits standards et de solution sur demande avec Standa l'un des leader sur le marché depuis 30 ans.

#### **Tables et composants**

- Table optique, breadboards et dispositifs anti-vibrations
- Supports et montures pour composants optiques, rails, platines de translation et rotation manuelles
- Diaphragmes manuels et motorisés, expanseurs de faisceaux, périscopes, filtres spatiaux et pinholes, filtres optiques, atténuateurs, roues à filtres...



La majeure partie du catalogue STANDA existe en version compatible vide pour une utilisation sous vide poussé à 10-6 Torr.





#### Systèmes de micro-manipulation d'échantillon

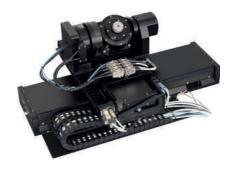
Les micromanipulateurs offrent une simplicité d'utilisation re- Micro Support marquable en combinant un microscope optique performant

à des outils de manipulation ultra-précis. Les systèmes ont été conçus pour que tout opérateur puisse réaliser diverses opérations (prélèvement et déplacement de substance, FIB Lift-Out, micro-marquage ou découpe, absorption de picolitre de liquide...) facilement et en douceur sur des échantillons microscopiques. Le contrôle se fait via un PC et il est possible de saisir un échantillon de quelques µm de dimensions en quelques minutes.

| Séries                          | QUICK Pro                                                                  | Axis Pro                                                             |  |  |
|---------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Configuration                   | Micromanipulateur indépendant<br>s'adaptant sur tout type<br>de microscope | Système complet incluant<br>2 micromanipulateurs<br>et un microscope |  |  |
| Taille échantillon 1 μm à 20 μm |                                                                            |                                                                      |  |  |






# Micropositionnement et Piézoélectrique



#### Platines motorisées

- Platines de translation et rotation motorisées (moteur pas à pas, continu, à entraînement direct ...) & Contrôleurs USB compacts 1 à 4 voies et contrôleur multivoies jusque 36 canaux
  - → Courses de quelques mm à 2840 mm
  - → Vitesses de quelques mm/s à 2000 mm/s
  - → Capacités de charge jusqu'à 150 kg
  - $\rightarrow$  Précisions et répétabilité de quelques  $\mu m$  à quelques  $1/10^{em}$  de  $\mu m$





#### Modules piézoélectriques

Les modules intelligents M3 sont des systèmes de positionnement "tout-en-un", avec électronique intégrée, qui offrent une précision inférieure au micromètre avec une compacité unique sur le marché. Chaque module M3 est



une solution entièrement intégrée (technologies brevetées et propriétaires de moteur, d'entraînement, de détection, de guidage et de contrôle piézoélectrique).

- Micro-platines linéaires
- Micro-actuateurs linéaires
- Micro-rotations
- Modules de focalisation
- Réglage angulaire de faisceau ("beam steering")



# **Composants optiques lasers**

Nous proposons une large gamme de composants optiques pour lasers, standards ou sur mesure, de l'UV (193nm) à l'Infrarouge (20 $\mu$ m), pour tous types d'applications et pour tous budgets.



Tenue au flux 80J / cm<sup>2</sup> par traitement IBS

Qualité de surface jusqu'à 10/5 (S/D), planéité  $\lambda/10$ 

De nombreux types de traitement sont possibles pour la réalisation de **miroirs HR, miroirs dichroïques, coupleurs, fenêtres, lentilles, composants de polarisation, cubes séparateurs, prismes**... et également de **composants femtoseconde** (large bande, faible GDD, compensation de GDD, interféromètre de Gire-Tournois...)

#### Filtres interférentiels

- Filtres passe bande
- Passe haut / passe bas
- Filtres Notch

- Filtres de fluorescence
- Verres colorés
- Densités neutres...

#### Cristaux non-linéaires

Cristaux non-linéaires de type PPLN pour la conversion de fréquence : SHG, SFM, OPO...

Version Bulk

Type de structure:
Single, Multiple
Fan-out, Chirp, Cascade

Version Guide d'onde

De type RPE ou Ridge

### Composants télécom

#### **Composants fibrés**

OptiWorks est un des principaux fabricants mondiaux de composants de fibres optiques et de modules intégrés certifiés ISO9001 / TL9000 pour diverses applications xWDM, FTTx et industrielles.

- Coupleurs, WDM, Splitters
- Filtres thin film : CWDM, DWDM, WDM
- Micro-optique : WDM, isolateurs, circulateurs
- Opto-mécaniques : switches, atténuateurs



### Scanners, Shutters, Cellules de Pockels

Shutters optiques pour sécurité laser (interlock)

Scanners résonnants (fréquence fixe), miniatures, angle large, fréquence élevée...

#### Choppers

Ces composants peuvent être utilisés sous vide, à très haute température, pour des applications militaires, industrielles, médicales, spatiales, ou recherche...

Systèmes Modulateurs Electro-optiques, Pulse Pickers, Cellules de Pockels, Q-switch, avec drivers HV

# Isolateurs optiques et Rotateurs de Faraday

Notre sélection d'isolateurs optiques comprend des modèles en espace libre simple et doubles étages, et des modèles fibrés, y compris pour laser à fibre haute puissance (jusqu'à 250W).

De l'UV au moyen infrarouge (14 μm)

Du module miniature à intégrer dans un système laser aux très grandes ouvertures (45 mm)

Tenue au flux laser jusqu'à 7J/cm² dans le proche IR (1010-1080 nm)

Isolation typique de 35-40 dB en version simple étage

Modèle large bande pour laser Ti:Sa et modèle accordable



# Lunettes de protection laser

Très large gamme de lunettes de protection de l'UV au Mid-IR avec protection certifiée selon norme DIN EN 207/208 et portant la marque CE. Des lunettes adaptées aux applications femtoseconde sont disponibles. Différentes montures peuvent être proposées pour le confort visuel de l'utilisateur (montures sur-lunettes permettant le port de lunettes de vue, masques ...)



#### Rideaux & Enceintes de protection laser

Les rideaux de notre partenaire SPETEC sont constitués de 2 couches identiques de matériaux **certifiés DIN EN 12254** assemblés selon une technique sandwich de façon à ce que les 2 côtés du rideau puissent être utilisés coté laser.



Différents systèmes d'accroche sont disponibles pour toutes dimensions de rideaux selon votre besoin. Des panneaux, des tentes pour table optique ou encore des enceintes laser peuvent également être proposés. Ceux-ci pourront être équipés sur mesure de sections à rideaux, à écran ou encore à hublot de protection laser.

#### Hotte à flux laminaire

Notre partenaire SPETEC propose une gamme complète et modulaire de filtres, d'enceintes et de systèmes à flux laminaire pour vos besoins d'environnement protégé et maîtrisé.

Le principe du flux laminaire : l'air ambiant est aspiré par un ventilateur radial et pressé au travers du filtre et du distributeur d'air. Cela crée un flux laminaire, c'est à dire que l'air s'écoule vers le bas en lignes parallèles. Les particules sont capturées par le flux d'air parallèle et transportées par le fond perforé de la hotte.



# **Support et SAV**

Notre département SAV assure le suivi de tous les produits commercialisés par Opton Laser. Notre équipe répondra également à toutes vos questions d'ordre technique et

vous conseillera sur votre application.

Nous assurons l'installation, la réparation et la maintenance des matériels, soit dans notre laboratoire, soit sur site, lorsque les délais l'exigent.

Nous proposons également des prêts de validation de matériel ou des essais en nos laboratoires avec des équipements de démonstration, ainsi que des formations sur site de vos éguipes techniques.

Contact: support@optonlaser.com

# UNE ÉQUIPE À VOTRE SERVICE

